2.2 Timing Models

As processes can take a long time to reply, can fail, or even simply leave the network during execution of the system, the communication between processes is uncertain. To take into account this uncertainty, the literature uses an underlying model that considers:

Three main timing models were defined [Lyn96]:

Among these three timing models, synchronous systems are included in partially synchronous systems, which are included in asynchronous systems, as shown in 2.1 [Cam20].

PIC

Figure 2.1: Representation of the three main timing models.

Note that there exist many other intermediate models between the synchronous and asynchronous models.

The different types of temporal models are summarized in 2.1.

Table 2.1: Table of temporal models.
  Message latency Computation time
  bound δ bound ϕ
   
Synchronous model
Exist, known and finite
Asynchronous model
Do not exist
Partially synchronous model
Exist but unknown


Table of Contents

1 Introduction
1.1 Contributions
1.1.1 Topology Aware Leader Election Algorithm for Dynamic Networks
1.1.2 Centrality-Based Eventual Leader Election in Dynamic Networks
1.2 Manuscript Organization
1.3 Publications
1.3.1 Articles in International Conferences
1.3.2 Articles in National Conferences
2 Background
2.1 Properties of Distributed Algorithms
2.2 Timing Models
2.3 Process Failures
2.4 Communication Channels
2.5 Failures of Communication Channels
2.6 Distributed Systems
2.6.1 Static Systems
2.6.2 Dynamic Systems
2.7 Centralities
2.8 Messages Dissemination
2.9 Leader Election
2.9.1 Classical Leader Election
2.9.2 Eventual Leader Election
2.10 Conclusion
3 Related Work
3.1 Classical Leader Election Algorithms
3.1.1 Static Systems
3.1.2 Dynamic Systems
3.2 Eventual Leader Election Algorithms
3.2.1 Static Systems
3.2.2 Dynamic Systems
3.3 Conclusion
4 Topology Aware Leader Election Algorithm for Dynamic Networks
4.1 System Model and Assumptions
4.1.1 Node states and failures
4.1.2 Communication graph
4.1.3 Channels
4.1.4 Membership and nodes identity
4.2 Topology Aware Leader Election Algorithm
4.2.1 Pseudo-code
4.2.2 Data structures, variables, and messages (lines 1 to 6)
4.2.3 Initialization (lines 7 to 11)
4.2.4 Periodic updates task (lines 12 to 16)
4.2.5 Connection (lines 20 to 23)
4.2.6 Disconnection (lines 24 to 27)
4.2.7 Knowledge reception (lines 28 to 38)
4.2.8 Updates reception (lines 39 to 53)
4.2.9 Pending updates (lines 54 to 65)
4.2.10 Leader election (lines 17 to 19)
4.2.11 Execution examples
4.3 Simulation Environment
4.3.1 Algorithms
4.3.2 Algorithms Settings
4.3.3 Mobility Models
4.4 Evaluation
4.4.1 Metrics
4.4.2 Instability
4.4.3 Number of messages sent per second
4.4.4 Path to the leader
4.4.5 Fault injection
4.5 Conclusion
5 Centrality-Based Eventual Leader Election in Dynamic Networks
5.1 System Model and Assumptions
5.1.1 Node states and failures
5.1.2 Communication graph
5.1.3 Channels
5.1.4 Membership and nodes identity
5.2 Centrality-Based Eventual Leader Election Algorithm
5.2.1 Pseudo-code
5.2.2 Data structures, messages, and variables (lines 1 to 4)
5.2.3 Initialization (lines 5 to 7)
5.2.4 Node connection (lines 8 to 17)
5.2.5 Node disconnection (lines 18 to 23)
5.2.6 Knowledge update (lines 24 to 34)
5.2.7 Neighbors update (lines 35 to 41)
5.2.8 Information propagation (lines 42 to 47)
5.2.9 Leader election (lines 48 to 52)
5.3 Simulation Environment
5.3.1 Algorithms Settings
5.3.2 Mobility Models
5.4 Evaluation
5.4.1 Metrics
5.4.2 Average number of messages sent per second per node
5.4.3 Average of the median path to the leader
5.4.4 Instability
5.4.5 Focusing on the 60 meters range over time
5.4.6 A comparative analysis with Topology Aware
5.5 Conclusion
6 Conclusion and Future Work
6.1 Contributions
6.2 Future Directions
A Appendix
A.1 Energy consumption per node
A.1.1 Simulation environment
A.1.2 Algorithms settings
A.1.3 Mobility Models
A.1.4 Metric
A.1.5 Performance Results