5.1 System Model and Assumptions

The system considered is the same as in Section 4.1.

5.1.1 Node states and failures

Nodes always follow the specification of the algorithm until they fail. They can fail by crashing and a node can recover, joining the system again with the same unique identifier as before the failure. Hence, a node keeps its identifier regardless of its state, and two nodes cannot have the same identifier. However, a node does not recover its state neither its knowledge of the network membership, thus, is initialized again.

Initially, all nodes in the system are in the correct state. A node is considered faulty if it fails and does not recover, or if it leaves the system forever. Otherwise, if present in the system, it is considered correct.

5.1.2 Communication graph

The assumptions for the communication graph are the same as in Section 4.1.2.

5.1.3 Channels

Nodes can only communicate by broadcasting local messages, which are received by all neighbors of the sending node. Communication is based on a fixed Wi-Fi channel, chosen beforehand. Eventually reliable communication channels are considered, with messages losses induced by messages interference and collisions. The CSMA/CA protocol included in IEEE 802.11 [09], is used to handle messages losses. There are no assumptions about message ordering, i.e. messages can be delivered out of order.

5.1.4 Membership and nodes identity

Initially, each node only knows its unique identifier in the system. This means that nodes do not know the total number of nodes, neither the membership of the system. Nodes detect their neighbors through a cross-layer mechanism described in Section 5.2.4, using already existing beacon messages of the data link layer. A node gets knowledge of the network membership by receiving knowledge messages from its neighbors.


Table of Contents

1 Introduction
1.1 Contributions
1.1.1 Topology Aware Leader Election Algorithm for Dynamic Networks
1.1.2 Centrality-Based Eventual Leader Election in Dynamic Networks
1.2 Manuscript Organization
1.3 Publications
1.3.1 Articles in International Conferences
1.3.2 Articles in National Conferences
2 Background
2.1 Properties of Distributed Algorithms
2.2 Timing Models
2.3 Process Failures
2.4 Communication Channels
2.5 Failures of Communication Channels
2.6 Distributed Systems
2.6.1 Static Systems
2.6.2 Dynamic Systems
2.7 Centralities
2.8 Messages Dissemination
2.9 Leader Election
2.9.1 Classical Leader Election
2.9.2 Eventual Leader Election
2.10 Conclusion
3 Related Work
3.1 Classical Leader Election Algorithms
3.1.1 Static Systems
3.1.2 Dynamic Systems
3.2 Eventual Leader Election Algorithms
3.2.1 Static Systems
3.2.2 Dynamic Systems
3.3 Conclusion
4 Topology Aware Leader Election Algorithm for Dynamic Networks
4.1 System Model and Assumptions
4.1.1 Node states and failures
4.1.2 Communication graph
4.1.3 Channels
4.1.4 Membership and nodes identity
4.2 Topology Aware Leader Election Algorithm
4.2.1 Pseudo-code
4.2.2 Data structures, variables, and messages (lines 1 to 6)
4.2.3 Initialization (lines 7 to 11)
4.2.4 Periodic updates task (lines 12 to 16)
4.2.5 Connection (lines 20 to 23)
4.2.6 Disconnection (lines 24 to 27)
4.2.7 Knowledge reception (lines 28 to 38)
4.2.8 Updates reception (lines 39 to 53)
4.2.9 Pending updates (lines 54 to 65)
4.2.10 Leader election (lines 17 to 19)
4.2.11 Execution examples
4.3 Simulation Environment
4.3.1 Algorithms
4.3.2 Algorithms Settings
4.3.3 Mobility Models
4.4 Evaluation
4.4.1 Metrics
4.4.2 Instability
4.4.3 Number of messages sent per second
4.4.4 Path to the leader
4.4.5 Fault injection
4.5 Conclusion
5 Centrality-Based Eventual Leader Election in Dynamic Networks
5.1 System Model and Assumptions
5.1.1 Node states and failures
5.1.2 Communication graph
5.1.3 Channels
5.1.4 Membership and nodes identity
5.2 Centrality-Based Eventual Leader Election Algorithm
5.2.1 Pseudo-code
5.2.2 Data structures, messages, and variables (lines 1 to 4)
5.2.3 Initialization (lines 5 to 7)
5.2.4 Node connection (lines 8 to 17)
5.2.5 Node disconnection (lines 18 to 23)
5.2.6 Knowledge update (lines 24 to 34)
5.2.7 Neighbors update (lines 35 to 41)
5.2.8 Information propagation (lines 42 to 47)
5.2.9 Leader election (lines 48 to 52)
5.3 Simulation Environment
5.3.1 Algorithms Settings
5.3.2 Mobility Models
5.4 Evaluation
5.4.1 Metrics
5.4.2 Average number of messages sent per second per node
5.4.3 Average of the median path to the leader
5.4.4 Instability
5.4.5 Focusing on the 60 meters range over time
5.4.6 A comparative analysis with Topology Aware
5.5 Conclusion
6 Conclusion and Future Work
6.1 Contributions
6.2 Future Directions
A Appendix
A.1 Energy consumption per node
A.1.1 Simulation environment
A.1.2 Algorithms settings
A.1.3 Mobility Models
A.1.4 Metric
A.1.5 Performance Results